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Abstract. Effective Boltzmannians in the sense of the block spin renormalization group are
computed for the 2D Ising model. The blocking is done with majority and Kadanoff rules
for blocks of size 2x 2. Transfer matrix techniques allow the determination of effective
Boltzmannians as polynomials in = exp(4B) for lattices of up to 4x 4 blocks. The
zeros of these polynomials are computed for all non-equivalent block spin configurations.
Their distribution in the complex8-plane reflects the regularity structure of the block spin
transformation. In the case of the Kadanoff rule spurious zeros approach the positigeasésl

at large values of8. They might be related to the renormalization group pathologies discussed
in the literature.

1. Introduction

Regularity is at the heart of position space (block spin) renormalization group. It is usually
assumed, and is of central importance, that coupling constants of the block spin effective
Hamiltonian depend in a non-singular way on the parameters of the original theory. There
are, however, situations where this assumption is not valid. Pathological behaviour in
renormalization groups of the low-temperature Ising model was first observed by Israel [1]
and Griffith and Pearce [2, 3]. An extensive and rigorous analysis of regularity properties
and pathologies in Ising model block spin transformations was performed by vaneEater
[4]. The central observation is that in certain situations the effective measure for the block
spin theory cannot be represented as(ex). This means that the effective measure is
non-Gibbsian. (See also [5] for a careful analysis of the situation.)

This paper presents some numerical results on the distribution of zeros in the complex
B-plane for block spin Boltzmannians of the 2D Ising model. These Boltzmannians are
partition functions with ‘fixed’ block sping., namely

B(w) =) P(u.0)exp[-pH(0)]. €y
P(u, o) encodes the blocking rule. Why should these zeros provide interesting information?
If the usual renormalization group assumptions are true, the zerBs.0f should—for all
block spin configurationg—behave ‘better’ than those of the full partition function. Note

that the zeros of the full partition function approach the real axis at the critical point [6].
This shouldnot happen for the zeros aB(r)! Furthermore, one might expect that the
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pathologies described in the literature are related to the distribution of zeros close to the
B-axis at large positive values.

This article is organized as follows. In section 2 the model notation is set up, and the
blocking rules are defined. Section 3 gives a sketch of the transfer matrix technique used to
compute the polynomials. Section 4 summarizes the numerical results for the majority rule
blocking. Observations for the Kadanoff blocking rule are reported in section 5. Conclusions
follow.

2. Model and block spin definition

We deal with the 2D Ising model, with partition function

7= Z exp[—BH (o)] 2

where

H(o) = —Zaiaj. (©)
(i,))

The o; assume values1 and are defined on a square lattice of extendion L, supplied

with periodic boundary conditions. The enerdy is a sum over all pairs of nearest
neighbours. In the infinite volume limit the model undergoes a second-order phase transition
at 8. = %In(«/ﬁ + 1) = 0.4406868. A block spin transformation with scale factor 2 is
defined as follows. Fol even, the lattice is divided in blocks of sizex22. Given

the configuration of ther-spins in a block/, a block spinu; is chosen with probability

P(u, o). The majority rule is defined through

P(w,o)= [ pitus. o) @)
blocks!
with
% if Ziel o; = 0
pi(pnr,o)=311 if iy ;c;0i>0 (5)
0 else.

The so-called Kadanoff rule is
. explour Zie] o)

= . 6
pilts, o) 2coshw Y, ; 01) ©)
In the limit @ — oo one recovers the majority rule.
Given thatZM P(u, o) =1, the full partition function can be rewritten as
Z=Y B (7)
"
with
B(uw) =) P(u.o)expl-BH(0)]. ®)

Usually, one aims at a parametrizati@®{u) = exp[—H’(1)], where H' is the effective
Hamiltonian. Note, however, that this is impossible in the pathological situations discussed
in the literature [4].
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Table 1. Notation for transfer matrix in the cade= 6.

T, T T T, T, T
Mn7 Mn9

o o, o o

T T T T T T

o, o. o. o, o, 0.

1 (%] T3 T4 5 76

o1 02 03 o4 o5 06

3. Computation of B(u)

An exact computation oB(u) as function of8 seems impossible. However, on lattices up

to at leastL = 8 it can be determined by numerical transfer matrix calculatiohs= 8
corresponds to 4 4 blocks, with 26 = 65536 block spin configurations. We do not

have to consider them all. Configurations connected through global spin-flip or geometric
symmetries (reflections, shifts, rotations) have the same effective BoltzmaBGian A
careful counting yields for the number of non-equivalent configuratiéns)

L 4 6 8 10
N(L) 4 13 479 86056

The result forN (10) was taken from [7].

After multiplication with a constant prefactoB(u) can be expressed as a polynomial
of order L? in u = exp(4B). The coefficients of this polynomial can be computed by
transfer matrix multiplication. In order to avoid notational complication, | give a sketch of
the method for the case ofx33 blocks L = 6). The generalization to other values ofis
then obvious. Some of the notation is depicted in table 1. The effective Boltzmannian can
be expressed as

B(w) = Tr[T - S(uz, ug, o) - T + S(ika, s, pte) + T+ S (i1, 2, wa)l.  (9)
Here, S is a 2 x 2% matrix, labelled by the Ising row configurations. It depends explicitly
on the line configuration of prescribed block spins. For example, the matrix elements of
S(u1, po, u3) are

6 3
S(p1, h2, U3)or = EXP|:/3 Z(Uiﬁiﬂ + 4T+ O'iTi)] l_[ pi(pr, o, 7). (10)
i1 =1

The matrixT", which is also of size 2x 28, is defined by

6
Ta,r = eXp|:ﬂ Zaitii|- (11)
i=1

It is not difficult to represent the transfer matrix multiplications in equation (9) in terms of
operations on the coefficients of polynomialsuin The computer implementation of these
operations form the basis for the results presented in this paper.
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Table 2. Coefficients in the polynomialg8(u) = Zkio By (w)uX, for the four independent 22
block spin configurations on ah = 4 lattice, majority rule.

cH#l cH#2 c#3 cH#d
k + - + + + + + +
- + - - + - + +
0 2 2 2 2
1 0 0 0 0
2 32 32 32 32
3 96 64 64 32
4 544 384 416 416
5 2336 1728 1728 1120
6 9360 6336 6560 5232
7 19712 12960 13344 9536
8 23674 20906 20570 16426
9 8224 14592 14112 14 688
10 1456 7360 6720 10448
11 96 1120 1696 4704
12 4 52 260 2244
13 0 0 32 384
14 0 0 0 256
15 0 0 0 0
16 0 0 0 16

4. Results for the majority rule

Let us start with some results fdr = 4. The four non-equivalent configurations, called
c#l. .. c#4, are specified in the head of table 2. In the columns we quote the coefficients
Bi(u0) of the polynomialB(n) = XX o B (u)u*.

The zeros of these polynomials were determined with the help of the computer algebra
program MapleV. For zerogg not lying on the negative real axis, we then computed
the correspondinggy-values throughBy = %In(uo). The distributions of these numbers
for L = 4 are shown in figure 1, with different symbol code for the four block spin
configurations. The figure also contains a circle of ragiuground the origin. Note that
the two zeros closest to the critical point belong to configuratigh

The results for the X 3 block lattice are plotted in figure 2. The 13 non-equivalent
block spin configurations are specified in table 3. One observes again that the zeros closest
to the critical point belong to the fully magnetized configuratiofi1(3).

The zeros of the 479 effective Boltzmannians on the 4 block lattice are shown
in figure 3. The plot also shows (with crosses) the zeros of the full partition function.
It seems that the Boltzmannian zeros do not approach the real axis in the critical region,
whereas the full partition function zeros do. To check this in more detail, we compare
the distribution of zeros in the critical region with the three available lattice sizes together,
see figure 4. The plot clearly demonstrates that the zeros do not move towards the real
axis in the critical region. One might conclude from this plot that there should exist in the
L — oo limit a strip around the regs-axis ranging fromB = 0 at least up tg. where the
effective Boltzmannian is free g8-zeros. In this region it should thus be possible to take
the logarithm without danger. Furthermore, high-temperature (sg)atxpansions for the
renormalization group could by analytical continuation be used in the critical region.

There is another observation to be made when comparing figures 2 and 3. With
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Figure 1. Zeros of B(u) for the four non-equivalent block spin configurations ona 2 block
lattice, majority rule. The circle has radiys.
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Figure 2. Zeros of B(u) for the 13 non-equivalent block spin configurations on & 3 block
lattice, majority rule.

increasingL, more and more zeros populate the part of the plane with larger real part
of 8. They are not obviously approaching the real axis there, but we also cannot exclude
such a scenario. Note that in the analysis of van Eateal [4] the case of the 2D lIsing
majority rule was not treated fat = 2. It is therefore, at the moment, not clear whether,

in this case, a larg@-pathology exists. We shall see in the next section that in case of
the Kadanoff rule (where pathologies do exist) spurious zeros seem to approach the axis at
large positives.
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Table 3. The 13 non-equivalent block spin configurations on a 3 lattice.

c#01 c#02 c#03 c#04
+ + - + + - + + + + - +
+ + - + o+ - - - + -
+ - - + + - - - - -
c#05 c#06 c#07 c#08
-+ + + + + - - + -+
+ + - + o+ - + + - + + -
- - - - + + - + -
c#09 c#10 c#ll c#12
+ + + -+ + + + + + +
+ + - - - + o+
+ + - + + - + + - + + -
c#13
+ + +
+ o+ o+
+ + +
0.8 . . : :
06 r .
04 r .
02 r .
s
)
o 0t ]
E
L]
-0.2 .
0.4 | :
-0.6 - .
_0‘8 L It 1 i

06 -04-02 0 02 04 06 08 1 12 14
Re beta

Figure 3. Zeros of B(r) for the 479 non-equivalent block spin configurations on>a4iblock
lattice, majority rule. In addition, the zeros of the full partition function on ax 8 lattice are
shown (crosses).

5. Results for Kadanoff rule

It has often been observed that passing frofrfanction block rule to a ‘Gaussian smeared’
rule improves the locality and analyticity properties of the effective Hamiltonian, see e.g.



Zeros in complex-plane of 2D Ising block spin Boltzmannians 9225

0.6 ¥ T
L "L=4" -
+ X x uL=6n x
05 [ x - HL=8n
| "Cr"
04t 1
=
Q
S 03} ]
E _
0.1 r 1
0 L 1 1 1
0 0.2 04 0.6 0.8 1
Re beta

Figure 4. Common plot of the Boltzmann zeros fér= 4, 6, and 8, majority rule.
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Figure 5. Zeros of B(u) for L = 4, for the majority rule ¢ = oo), and for the Kadanoff rules
with = 1 andw = 2.

[8]. In this section some results will be presented on the distribution of zeros in the case of
the Kadanoff rule equation (6) fas = 1 andw = 2. For finitew there is a finite probability
that the block spin does not have the same sign as the majority of spins in the block:

Zie] oy prOb(N« = Dyp-1 proull« =1,
4 0.999 664 65 (99999 89
2 098201379 (P99 664 65
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Figure 6. Zeros of B(u) for L = 6, with Kadanoff rule. ) v =1, (b) w = 2.

In figures 5 and 6 we show the zeros for= 4 andL = 6, both foro = 1 andw = 2.
Obviously, most of the zeros in the neighbourhood of the critical circle do not move very
much. In fact they are already very close to their majority rule values. However, compared
with the w = oo case, extra zeros appear that populate the region of larger real part of
It might be interesting to note that the zeros with the largest real patthElong to block
spin configuratiorc#2, followed by those oé#1. Another observation, also clearly seen in
figure 6, is that the spurious zeros move to the right wdeds increased. Most likely they
are shifted to infinity when passing to the majority rule.
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Figure 7. Zeros of B(u) for L = 4, 6, and 8, with Kadanoff ruley = 1.

In figure 7 the zeros of all three lattice sizes,= 4, 6, and 8 are plotted for the
casew = 1}. A careful inspection reveals that the zeros in the right half-pdmenove
towards the real axis when the lattice size is increased. They may well be reflecting the
large B-pathologies.

6. Conclusions

The distribution of zeros of effective Boltzmannians was studied for 2D Ising systems. Both
in the case of the majority and the Kadanoff rule a finite region around the critical point
remains free of zeros, and when the volume is increased. In the case of the Kadanoff rule,
however, zeros populate the right half-plane and approach the real axis aplarfieey

might be related to the pathologies of a number of Ising renormalization groups discussed
in the literature. It would be very interesting to understand this relation (if it exists).
Furthermore, one should try to understand the origin of the extra zeros that appear for finite
. The present study shows that the distribution of laggeeros changes significantly
when w becomes finite. These findings do not, however, exclude the possibility of large
B-pathologies of the 2D Ising majority rule renormalization group.
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