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Abstract. Effective Boltzmannians in the sense of the block spin renormalization group are
computed for the 2D Ising model. The blocking is done with majority and Kadanoff rules
for blocks of size 2× 2. Transfer matrix techniques allow the determination of effective
Boltzmannians as polynomials inu = exp(4β) for lattices of up to 4× 4 blocks. The
zeros of these polynomials are computed for all non-equivalent block spin configurations.
Their distribution in the complexβ-plane reflects the regularity structure of the block spin
transformation. In the case of the Kadanoff rule spurious zeros approach the positive realβ-axis
at large values ofβ. They might be related to the renormalization group pathologies discussed
in the literature.

1. Introduction

Regularity is at the heart of position space (block spin) renormalization group. It is usually
assumed, and is of central importance, that coupling constants of the block spin effective
Hamiltonian depend in a non-singular way on the parameters of the original theory. There
are, however, situations where this assumption is not valid. Pathological behaviour in
renormalization groups of the low-temperature Ising model was first observed by Israel [1]
and Griffith and Pearce [2, 3]. An extensive and rigorous analysis of regularity properties
and pathologies in Ising model block spin transformations was performed by van Enteret al
[4]. The central observation is that in certain situations the effective measure for the block
spin theory cannot be represented as exp(−H). This means that the effective measure is
non-Gibbsian. (See also [5] for a careful analysis of the situation.)

This paper presents some numerical results on the distribution of zeros in the complex
β-plane for block spin Boltzmannians of the 2D Ising model. These Boltzmannians are
partition functions with ‘fixed’ block spinsµ, namely

B(µ) =
∑
σ

P (µ, σ )exp[−βH(σ)]. (1)

P(µ, σ) encodes the blocking rule. Why should these zeros provide interesting information?
If the usual renormalization group assumptions are true, the zeros ofB(µ) should—for all
block spin configurationsµ—behave ‘better’ than those of the full partition function. Note
that the zeros of the full partition function approach the real axis at the critical point [6].
This shouldnot happen for the zeros ofB(µ)! Furthermore, one might expect that the
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pathologies described in the literature are related to the distribution of zeros close to the
β-axis at large positive values.

This article is organized as follows. In section 2 the model notation is set up, and the
blocking rules are defined. Section 3 gives a sketch of the transfer matrix technique used to
compute the polynomials. Section 4 summarizes the numerical results for the majority rule
blocking. Observations for the Kadanoff blocking rule are reported in section 5. Conclusions
follow.

2. Model and block spin definition

We deal with the 2D Ising model, with partition function

Z =
∑
σ

exp[−βH(σ)] (2)

where

H(σ) = −
∑
〈i,j〉

σiσj . (3)

The σi assume values±1 and are defined on a square lattice of extensionL× L, supplied
with periodic boundary conditions. The energyH is a sum over all pairs of nearest
neighbours. In the infinite volume limit the model undergoes a second-order phase transition
at βc = 1

2 ln(
√

2+ 1) = 0.440 6868. A block spin transformation with scale factor 2 is
defined as follows. ForL even, the lattice is divided in blocks of size 2× 2. Given
the configuration of theσ -spins in a blockI , a block spinµI is chosen with probability
P(µ, σ). The majority rule is defined through

P(µ, σ) =
∏

blocksI

pI (µI , σ ) (4)

with

pI (µI , σ ) =


1
2 if

∑
i∈I σi = 0

1 if µI
∑

i∈I σi > 0

0 else.

(5)

The so-called Kadanoff rule is

pI (µI , σ ) = exp(ωµI
∑

i∈I σi)
2 cosh(ω

∑
i∈I σi)

. (6)

In the limit ω→∞ one recovers the majority rule.
Given that

∑
µ P (µ, σ ) = 1, the full partition function can be rewritten as

Z =
∑
µ

B(µ) (7)

with

B(µ) =
∑
σ

P (µ, σ )exp[−βH(σ)]. (8)

Usually, one aims at a parametrizationB(µ) = exp[−H ′(µ)], whereH ′ is the effective
Hamiltonian. Note, however, that this is impossible in the pathological situations discussed
in the literature [4].
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Table 1. Notation for transfer matrix in the caseL = 6.

τ. τ. τ. τ. τ. τ.

µ7 µ8 µ9

σ. σ. σ. σ. σ. σ.

τ. τ. τ. τ. τ. τ.

µ4 µ5 µ6

σ. σ. σ. σ. σ. σ.

τ1 τ2 τ3 τ4 τ5 τ6

µ1 µ2 µ3

σ1 σ2 σ3 σ4 σ5 σ6

3. Computation ofB(µ)

An exact computation ofB(µ) as function ofβ seems impossible. However, on lattices up
to at leastL = 8 it can be determined by numerical transfer matrix calculations.L = 8
corresponds to 4× 4 blocks, with 216 = 65 536 block spin configurationsµ. We do not
have to consider them all. Configurations connected through global spin-flip or geometric
symmetries (reflections, shifts, rotations) have the same effective BoltzmannianB(µ). A
careful counting yields for the number of non-equivalent configurationsN(L)

L 4 6 8 10
N(L) 4 13 479 86056

.

The result forN(10) was taken from [7].
After multiplication with a constant prefactor,B(µ) can be expressed as a polynomial

of order L2 in u = exp(4β). The coefficients of this polynomial can be computed by
transfer matrix multiplication. In order to avoid notational complication, I give a sketch of
the method for the case of 3× 3 blocks (L = 6). The generalization to other values ofL is
then obvious. Some of the notation is depicted in table 1. The effective Boltzmannian can
be expressed as

B(µ) = Tr[T · S(µ7, µ8, µ9) · T · S(µ4, µ5, µ6) · T · S(µ1, µ2, µ3)]. (9)

Here,S is a 26× 26 matrix, labelled by the Ising row configurations. It depends explicitly
on the line configuration of prescribed block spins. For example, the matrix elements of
S(µ1, µ2, µ3) are

S(µ1, µ2, µ3)σ,τ = exp

[
β

6∑
i=1

(σiσi+1+ τiτi+1+ σiτi)
] 3∏
I=1

pI (µI , σ, τ ). (10)

The matrixT , which is also of size 26× 26, is defined by

Tσ,τ = exp

[
β

6∑
i=1

σiτi

]
. (11)

It is not difficult to represent the transfer matrix multiplications in equation (9) in terms of
operations on the coefficients of polynomials inu. The computer implementation of these
operations form the basis for the results presented in this paper.
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Table 2. Coefficients in the polynomialsB(µ) =∑L2

k=0Bk(µ)u
k , for the four independent 2×2

block spin configurations on anL = 4 lattice, majority rule.

c#1 c#2 c#3 c#4

k
+ −
− +

+ +
− −

+ +
+ −

+ +
+ +

0 2 2 2 2
1 0 0 0 0
2 32 32 32 32
3 96 64 64 32
4 544 384 416 416
5 2 336 1 728 1 728 1 120
6 9 360 6 336 6 560 5 232
7 19 712 12 960 13 344 9 536
8 23 674 20 906 20 570 16 426
9 8 224 14 592 14 112 14 688

10 1 456 7 360 6 720 10 448
11 96 1 120 1 696 4 704
12 4 52 260 2 244
13 0 0 32 384
14 0 0 0 256
15 0 0 0 0
16 0 0 0 16

4. Results for the majority rule

Let us start with some results forL = 4. The four non-equivalent configurations, called
c#1. . . c#4, are specified in the head of table 2. In the columns we quote the coefficients
Bk(µ) of the polynomialB(µ) =∑L2

k=0Bk(µ)u
k.

The zeros of these polynomials were determined with the help of the computer algebra
program MapleV. For zerosu0 not lying on the negative real axis, we then computed
the correspondingβ0-values throughβ0 = 1

4 ln(u0). The distributions of these numbers
for L = 4 are shown in figure 1, with different symbol code for the four block spin
configurations. The figure also contains a circle of radiusβc around the origin. Note that
the two zeros closest to the critical point belong to configurationc#4.

The results for the 3× 3 block lattice are plotted in figure 2. The 13 non-equivalent
block spin configurations are specified in table 3. One observes again that the zeros closest
to the critical point belong to the fully magnetized configuration (c#13).

The zeros of the 479 effective Boltzmannians on the 4× 4 block lattice are shown
in figure 3. The plot also shows (with crosses) the zeros of the full partition function.
It seems that the Boltzmannian zeros do not approach the real axis in the critical region,
whereas the full partition function zeros do. To check this in more detail, we compare
the distribution of zeros in the critical region with the three available lattice sizes together,
see figure 4. The plot clearly demonstrates that the zeros do not move towards the real
axis in the critical region. One might conclude from this plot that there should exist in the
L→∞ limit a strip around the realβ-axis ranging fromβ = 0 at least up toβc where the
effective Boltzmannian is free ofβ-zeros. In this region it should thus be possible to take
the logarithm without danger. Furthermore, high-temperature (smallβ) expansions for the
renormalization group could by analytical continuation be used in the critical region.

There is another observation to be made when comparing figures 2 and 3. With
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Figure 1. Zeros ofB(µ) for the four non-equivalent block spin configurations on a 2× 2 block
lattice, majority rule. The circle has radiusβc.

Figure 2. Zeros ofB(µ) for the 13 non-equivalent block spin configurations on a 3× 3 block
lattice, majority rule.

increasingL, more and more zeros populate the part of the plane with larger real part
of β. They are not obviously approaching the real axis there, but we also cannot exclude
such a scenario. Note that in the analysis of van Enteret al [4] the case of the 2D Ising
majority rule was not treated forL = 2. It is therefore, at the moment, not clear whether,
in this case, a largeβ-pathology exists. We shall see in the next section that in case of
the Kadanoff rule (where pathologies do exist) spurious zeros seem to approach the axis at
large positiveβ.
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Table 3. The 13 non-equivalent block spin configurations on a 3× 3 lattice.

c#01
+ + −
+ + −
+ − −

c#02
+ + −
+ + −
+ + −

c#03
+ + +
+ − −
+ − −

c#04
+ − +
+ + −
+ − −

c#05
− + +
+ + −
+ − −

c#06
+ + +
+ + −
+ − −

c#07
− − +
+ + −
+ + −

c#08
+ − +
+ + −
+ + −

c#09
+ + +
+ + −
+ + −

c#10
− + +
+ − +
+ + −

c#11
+ + +
+ − +
+ + −

c#12
+ + +
+ + +
+ + −

c#13
+ + +
+ + +
+ + +

Figure 3. Zeros ofB(µ) for the 479 non-equivalent block spin configurations on a 4× 4 block
lattice, majority rule. In addition, the zeros of the full partition function on an 8× 8 lattice are
shown (crosses).

5. Results for Kadanoff rule

It has often been observed that passing from aδ-function block rule to a ‘Gaussian smeared’
rule improves the locality and analyticity properties of the effective Hamiltonian, see e.g.
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Figure 4. Common plot of the Boltzmann zeros forL = 4, 6, and 8, majority rule.

Figure 5. Zeros ofB(µ) for L = 4, for the majority rule (ω = ∞), and for the Kadanoff rules
with ω = 1 andω = 2.

[8]. In this section some results will be presented on the distribution of zeros in the case of
the Kadanoff rule equation (6) forω = 1 andω = 2. For finiteω there is a finite probability
that the block spin does not have the same sign as the majority of spins in the block:∑

i∈I σI prob(µ = 1)ω=1 prob(µ = 1)ω=2

4 0.999 664 65 0.999 999 89
2 0.982 013 79 0.999 664 65

.
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Figure 6. Zeros ofB(µ) for L = 6, with Kadanoff rule. (a) ω = 1, (b) ω = 2.

In figures 5 and 6 we show the zeros forL = 4 andL = 6, both forω = 1 andω = 2.
Obviously, most of the zeros in the neighbourhood of the critical circle do not move very
much. In fact they are already very close to their majority rule values. However, compared
with theω = ∞ case, extra zeros appear that populate the region of larger real part ofβ.
It might be interesting to note that the zeros with the largest real part ofβ belong to block
spin configurationc#2, followed by those ofc#1. Another observation, also clearly seen in
figure 6, is that the spurious zeros move to the right whenω is increased. Most likely they
are shifted to infinity when passing to the majority rule.
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Figure 7. Zeros ofB(µ) for L = 4, 6, and 8, with Kadanoff rule,ω = 1.

In figure 7 the zeros of all three lattice sizes,L = 4, 6, and 8 are plotted for the
caseω = 1†. A careful inspection reveals that the zeros in the right half-planedo move
towards the real axis when the lattice size is increased. They may well be reflecting the
largeβ-pathologies.

6. Conclusions

The distribution of zeros of effective Boltzmannians was studied for 2D Ising systems. Both
in the case of the majority and the Kadanoff rule a finite region around the critical point
remains free of zeros, and when the volume is increased. In the case of the Kadanoff rule,
however, zeros populate the right half-plane and approach the real axis at largeβ. They
might be related to the pathologies of a number of Ising renormalization groups discussed
in the literature. It would be very interesting to understand this relation (if it exists).
Furthermore, one should try to understand the origin of the extra zeros that appear for finite
ω. The present study shows that the distribution of largeβ-zeros changes significantly
whenω becomes finite. These findings do not, however, exclude the possibility of large
β-pathologies of the 2D Ising majority rule renormalization group.
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